
1. Introduction
Population and assets exposed to floods have been ever-increasing over the globe (Hirabayashi et  al.,  2013; 
Jongman et al., 2012; Tellman et al., 2021). Changes in land use have shifted so the United States is the leading 
country with the highest exposed asset values (Jongman et al., 2012; Rajib et al., 2021). Continuing urbanization, 
aging infrastructures, and intensified storms can exacerbate the current situation.

Future flood changes are often quantified by frequency (Hirabayashi et  al.,  2013; Li et  al.,  2022; Swain 
et al., 2020), magnitude (Bates et al., 2020; Brunner et al., 2021), and spatiotemporal characteristics (Alfieri 
et al., 2020; Tellman et al., 2021) with greater attention on the former two. Flood spatiotemporal features, spatial 
scale and seasonality in particular, are especially central to anticipating flood exposure and risk management 
(Blöschl et al., 2017; Jongman et al., 2012; Tellman et al., 2021). Moreover, they are recognized as attributes 
to generalize flood-generating mechanisms (Brunner et al., 2020; Li, Chen, Gao, Gourley, et al., 2021; Merz 
et al., 2021; Smith et al., 2011; Stein et al., 2021; Villarini, 2016). A body of studies has successfully described 
US flood spatial dependence and seasonality based on historical observations (Brunner et al., 2020; Li, Chen, 
Gao, Gourley, et al., 2021; Stein et al., 2021; Villarini, 2016). Villarini (2016) completed a comprehensive study 
on US streamflow seasonality, in which he did not observe strong temporal shifts in flood seasonality, but season-
ality strength is weakening due to human interference. Berghuijs et al. (2019) proposed the term “flood synchrony 
scale” to characterize the flood extent of which at least half of the river gauges co-experience floods. Brunner 
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LI ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

Spatiotemporal Characteristics of US Floods: Current Status 
and Forecast Under a Future Warmer Climate
Zhi Li1  , Shang Gao1  , Mengye Chen1  , Jonathan J. Gourley2  , and Yang Hong1 

1School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA, 2NOAA National 
Severe Storms Laboratory, Norman, OK, USA

Key Points:
•  Overall increase in rainfall and flood 

occurrences and spatial scales over 
the continental US under a warmer 
climate

•  There are weakening extreme rainfall 
and flood seasonality in the future

•  Earlier and faster snowmelt 
exacerbates future floods in the West 
while drier antecedent soil moisture 
delays and offsets floods in the East

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
Y. Hong,
yanghong@ou.edu

Citation:
Li, Z., Gao, S., Chen, M., Gourley, J. 
J., & Hong, Y. (2022). Spatiotemporal 
characteristics of US floods: Current 
status and forecast under a future 
warmer climate. Earth's Future, 
10, e2022EF002700. https://doi.
org/10.1029/2022EF002700

Received 3 FEB 2022
Accepted 7 JUN 2022

Author Contributions:
Conceptualization: Shang Gao, 
Yang  Hong
Data curation: Zhi Li
Formal analysis: Zhi Li
Funding acquisition: Yang Hong
Investigation: Zhi Li
Methodology: Zhi Li, Shang Gao, 
Mengye Chen, Jonathan J. Gourley
Project Administration: Yang Hong
Software: Zhi Li

10.1029/2022EF002700

Special Section:
Advancing flood charac-
terization, modeling, and 
communication

RESEARCH ARTICLE

1 of 16

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-4760-842X
https://orcid.org/0000-0001-8641-2433
https://orcid.org/0000-0003-2135-1670
https://orcid.org/0000-0001-7363-3755
https://orcid.org/0000-0001-8720-242X
https://doi.org/10.1029/2022EF002700
https://doi.org/10.1029/2022EF002700
https://doi.org/10.1029/2022EF002700
https://doi.org/10.1029/2022EF002700
https://doi.org/10.1029/2022EF002700
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2328-4277.FLOOD2022
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2328-4277.FLOOD2022
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2328-4277.FLOOD2022


Earth’s Future

LI ET AL.

10.1029/2022EF002700

2 of 16

et al. (2020) applied this concept in US river gauges and identified 15 regions with similar flood behaviors. None-
theless, the aforementioned studies have provided little understanding outside gauge locations that are sparsely 
sampled over the US To fill the gap, continental-scale hydrologic simulations at each river reach are essential. 
Moreover, continuous simulation in lieu of event-based simulation is critical as the antecedent catchment condi-
tion can thus be well represented (Wasko et al., 2019).

However, changes in future spatiotemporal flood characteristics are more equivocal, although some generic 
features such as earlier snowmelt season are generally expected. Primary challenges hindering additional insights 
are: (a) the lack of high-resolution climate simulations underpinning fine-scale flood simulations, especially for 
flood extent, (b) uncertain climate simulations that often require large ensemble predictions to replace the tradi-
tional one-model-one-vote approach (Clark et al., 2016; Giuntoli et al., 2021), and (c) complex flood-generating 
mechanisms (Wasko et al., 2019). For (a) and (b), these challenges persist to date, but workarounds have been 
proposed. For instance, downscaling Global Climate Models (GCM) has been explored over the last two decades 
to enable regional climate projections. Generally, two downscaling approaches have become mainstream: statis-
tical downscaling and dynamic downscaling (the predictor-predict approach). Non-stationarity in atmospheric 
components has been the obstacle for statistical downscaling and is yet to be resolved by the community. Likewise, 
future flood characteristics are unlikely to remain stationary since the atmosphere is the main driver for floods. 
In contrast, dynamic downscaling uses the outputs from the GCMs and then drives a regional climate model, 
yielding more realistic simulations. Lately, dynamic downscaling has been prevailing and holding great promise 
owing to the increased computational power and physics parameterizations (Clark et al., 2016; Liu et al., 2017; 
Prein et al., 2017). The recent CONUS-1 data set (Liu et al., 2017), produced at hourly and 4-km resolution, has 
become one of the highest resolution continental climate simulations, which has empowered a wide range of 
regional climate studies, including extreme precipitation (Prein et al., 2017), snowmelt (Musselman et al., 2018), 
flash flood-producing storms (Dougherty & Rasmussen, 2020), flood frequency analysis (Yu et al., 2020), etc. 
By applying the Pseudo Global Warming (PGW) approach (Schär et al., 1996), this data set circumvents the more 
uncertain dynamic changes yet focuses on more deterministic thermodynamic changes. As such, it is suited for 
continental flood simulations requiring high resolution and broad spatial coverage.

The focus on underlying physical processes recognizes that floods are not only dependent on extreme rainfall, 
for which there is high confidence in increases over North America in the future (Douville et al., 2021), but 
with modulations by the land surface processes (Merz et al., 2021). Undoubtedly, increasing rainfall extremes 
will directly amplify flood magnitude in a controlled environment (meaning other variables remain unchanged). 
However, there is widespread evidence that antecedent catchment conditions (soil moisture and groundwater 
level) are becoming drier as temperature rises in conjunction with more partitioning of snowfall to rain and earlier 
snowmelt (Ivancic & Shaw, 2015; Sharma et al., 2018; Wasko et al., 2021). These conditions counteract increases 
in extreme rainfall magnitudes to modulate the flood-generating process. While there are so many conceptual 
discussions in the literature, there are still ongoing works perceiving extreme precipitation as a proxy for high 
streamflow (Ivancic & Shaw, 2015). Moreover, many details are lacking about which processes dominate and for 
which times of the year and climate divisions.

Motivated by the lack of continental-scale studies of reach-level flood characteristics beyond gauge locations and 
elusive future changes of such, in this study we seek to address the following objectives: (a) assess the relative influ-
ences of atmospheric and land surface drivers to flood spatiotemporal characteristics by comparing present-day 
conditions to future ones, (b) quantify the spatial changes in rainfall and flood extents, and (c) estimate temporal 
shifts and changes of the seasonality of rainfall and flooding in the CONUS. We achieve these goals via simulat-
ing US reach-level streamflow using forcing data from the outputs of a continental convection-permitting climate 
model. Methodologies are then developed to quantify rainfall/flood spatial scales after spatiotemporal clustering. 
To our best knowledge, we, for the first time, analyze the spatiotemporal changes in continental convective-scale 
rainfall and kilometer-scale floods based on a proposed framework that works for distributed models. It is antic-
ipated that this study provides a practical assessment of US extreme flood characteristics, and more importantly, 
on their future changes so that local communities can be well prepared to mitigate their impacts.
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2. Data and Methods
2.1. US Climate Divisions

Statistical results throughout this study are aggregated to US climate regions to provide a more holistic view. The 
popular Koppen-Geiger climate classification, used widely in climatological studies, however bears inhomogene-
ous divisions in the US For instance, the Southwest, representing an arid climate, is divided into four sub-classes, 
while the vast southeastern US is represented by a single class, as shown in Figure S1a in Supporting Informa-
tion S1. In contrast, the Bukovsky climate division in Figure S1b in Supporting Information S1 equally divides 
the US into 17 classes based on temperature and precipitation (Bukovsky, 2011). This climate regionalization 
yields subdivisions with similar areas and is thus preferred in this study as well as in other climate studies (Prein 
et al., 2017). A list of data used in this study can be found in Table 1 in Supporting Information S1.

2.2. Convective-Permitting Climate Simulation

In this study, we use the outputs from a 13-year CONUS climate simulation at hourly time step and 4-km grid 
spacing to force a continuous hydrologic simulation. The retrospective simulation control run (CTL) from 2000 
to 2013 downscales ERA-Interim reanalysis data, with spectral nudging applied (Liu et al., 2017). In parallel, a 
future climate counterpart is simulated by applying the Pseudo Global Warming approach (PGW) which perturbs 
climatic boundary conditions (e.g., wind, temperature, humidity, and sea surface temperature) from an ensemble 
mean of 19 CMIP5 models under the Representative Concentration Pathway (RCP) 8.5. Climatic changes are 
evaluated by subtracting each variable in the simulation period 2071–2100 from the reference period 1976–2005. 
This approach highlights relative changes and minimizes the absolute uncertainties. The essence of the PGW run 
is to assess more deterministic thermodynamic climate change impacts while not allowing the impacts of more 
uncertain dynamic changes. Because of spectral nudging, we can then conduct event-to-event analysis of rainfall 
and floods based on the current and future climate.

2.3. Hydrologic Simulation

The Coupled Routing Excess STorage (CREST) V2.1 is used in this study to simulate hydrologic responses to 
climate change. The CREST model is a distributed hydrologic model that couples Snow-17 for snowmelt, Vari-
able Infiltration Curve (VIC) for soil infiltration, and kinematic wave solution for overland and channel routing. 
A conceptual linear reservoir routing is used for subsurface flows. Prior studies have successfully applied the 
CREST model for operational flash flood forecasts in the US (Gourley et al., 2017), detecting global floods and 
landslides (Wu et al., 2012; Zhang et al., 2016), mapping flood inundation extents and depths (Chen et al., 2021; 
Li, Chen, Gao, Luo, et al., 2021), and simulating the water cycle (Li et al., 2018). Building upon a previous legacy 
that operates the CREST model for real-time flash flood forecasting (Flamig et al., 2020; Gourley et al., 2017; 
Vergara et al., 2016), we use the a-priori distributed parameters over the CONUS. Since potential evapotran-
spiration (PET) in the future will increase given global warming, we calculated future daily PET based on the 
Thornthwaite equation that depends only on daily temperature from climate simulations (Thornthwaite, 1948). 
Other variables such as hourly precipitation and temperature are direct inputs to the CREST model. We simulated 
hourly streamflow at 1-km grid spacing from 2001 to 2013, with the first year used to warm up the model states.

2.4. Rainfall/Flood Spatial Scale

Rainfall spatial scale is measured in this study by first considering the contour lines of daily rainfall enclosed 
by a certain extreme threshold, referred to as the areal extent (Figure 1). In practice, we plot contour lines for 
daily rainfall greater than 2-year average recurrence interval thresholds for the retrospective simulation. The 
use of 2-year rainfall as thresholds can be found in the literature such as Lamjiri et al. (2017). A gamma distri-
bution is fitted to the annual maximum rainfall values, and a certain value exceeding the 2-year return interval 
is determined from the distribution. The goodness-of-fit test (Anderson-Darling test) regarding extreme value 
distribution is shown in Figure S2 in Supporting Information S1, where 92% of the samples pass the significance 
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test at a significant level of 0.01. Then, we sample vertices along the contour line. The area can be approximated 
numerically using Green’s theorem shown in Equation 1:

𝐴𝐴 = ∬ d𝐴𝐴 =
1

2 ∮
𝐶𝐶

𝑥𝑥d𝑦𝑦 − 𝑦𝑦d𝑥𝑥𝑥 (1)

where C is a closed curve that bounds regions with extreme rainfall, and x, y refer to the coordinate of the vertices 
sampled along the contour line. Lastly, the rainfall spatial scale is computed by measuring the distance between 
the centroid of the enclosed area and the farthest point on curve C. For the example given in Figure 1, the 2-year 
rainfall threshold in such a region is 28.6 mm/day, and the area of an enclosed curve is calculated as 3,211 km 2 
using Equation 1. The spatial scale of this event is 260.2 km.

River flooding in nature, unlike continuous rainfall fields, occurs along elevation-dependent river networks. 
Therefore, a different strategy needs to be developed to account for river network topology. Flood spatial scale, 
by definition, is the maximum spatial extent in which multiple gauges or reaches co-experience flooding synchro-
nously. Berghuijs et al. (2019) proposed the measure of flood synchrony scale by computing the maximum radius 
of gauges within which at least 50% of them are flooded. Similar approaches have been adopted in the literature 
(Brunner et al., 2020; Kemter et al., 2020). However, their works are limited to gauge sites that are sparsely 
distributed, and there lacks a detailed representation of river topology. As a consequence, the flood synchrony 
scale may be overestimated by disconnected river networks. In contrast, distributed hydrologic simulations can 
overcome this limitation by incorporating pixel-wise sampling with a river network embedded in the model 
setting. A challenge notwithstanding for distributed models in flood synchrony studies is that there is no prior 
standard to calculate flood spatial scale.

In this study, we propose a method that fills this gap and can be applied in any distributed streamflow 
simulation. First, the flood threshold is computed based on an N-year event. Here “N” can be replaced with 
any number by considering the length of data and application. In this study, given the total 10-year simulation, 
we select a 2-year streamflow value as the threshold, which is approximated as a bankful condition for 
river channels (He & Wilkerson,  2011). Similar to 2-year rainfall, a log-Pearson type III distribution is 
fitted to the annual maxima streamflow values, which is a conventional way to calculate return intervals 
by the US Geological Survey (Veilleux et al., 2014). The goodness-of-fit test (Anderson-Darling test) of 
the distribution is shown in Figure S3 in Supporting Information  S1, where 91.6% of the samples pass 
the significance test at a significant level of 0.01. With the flood thresholds available at all grid cells, 
flood occurrences at each pixel can be estimated by simply counting the events that exceed this threshold. 
Second, the flood occurrences can be rearranged in a matrix form (m × n) with binary values, termed the 

Figure 1. An illustration of rainfall spatial scale calculation, where symbol C represents the enclosed curve. CTL: historical simulation; Pseudo Global Warming: 
future simulation.
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co-occurrence matrix. Here “m” represents the number of days or hours, depending on the data frequency, 
and “n” represents the number of pixels in output streamflow simulation. The co-occurrence matrix is 
used to select synchronous flood events and cluster pixels in proximity. Third, at each timestamp, we 
cluster flooded pixels with an unsupervised machine learning algorithm, Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) (Ester et  al.,  1996). The DBSCAN is a density-based clustering 
non-parametric algorithm that groups high-density points in space and marks isolated points as outliers. In 
doing so, we can remove isolated flood pixels while focusing on densely flooded regions. Lastly, we find 
the centroid geophysical location within each cluster and compute the maximum distance to enclosed edge 
nodes. A schematic flowchart of these processing steps is shown in Figure 2. Similar approach can be found 
in Brunner et al. (2020).

2.5. Flood Seasonality Measures

We aggregate the hourly streamflow data to daily to investigate flood seasonality over the CONUS. The circular 
statistics (i.e., circular mean, circular variance) are used for data such as flood calendar days on a polar coordi-
nate system (Burn, 1997; Villarini, 2016). Circular mean and resultant length are the two primary measures to 
determine the average rainfall/flood days in Days of the Year (DOY) and strength of the seasonality, respectively. 
The strength of seasonality reflects how strong the seasonality is, with one indicating a strong seasonal cycle 
and 0 indicating no seasonal cycle. For brevity, we term the strength of seasonality as the seasonality index (SI) 
hereafter. Equations 2 and 3 express the calculation of circular mean and SI in a complex domain.

Mean = �
(

∑�

�=1
exp (� ⋅ ��)

) 
(2)

SI = 1
�

‖

∑�

�=1
exp (� ⋅ ��) ‖

 

(3)

where function A returns the angle of the complex; i is the imaginary unit; αj is the jth day of the year with a range 
of (0.365). The 𝐴𝐴 ‖ ⋅ ‖ denotes the absolute value.

Figure 2. Schematic view of calculating flood spatial scale.
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3. Results
3.1. Frequency and Spatial Changes

3.1.1. Extreme Rainfall

Extreme rainfall appears to increase both in occurrences (+118.0%) and spatial scales (101.7%) across all US 
climate regions under future climate simulation (Figure 3). Driven by different weather patterns, such changes 
vary by region. In the Pacific West Coast, the increases in both extreme rainfall occurrences and spatial scales 
are the least (+37.7%/58.4% for the change of occurrences/scale) among US climate zones. The main forcing 
agent there for extreme rainfall is atmospheric rivers (ARs) which are narrow and long plumes that originated 
from  the tropics to replenish water resources and cause flooding along the West Coast. It is found that 78%–100% 
of the storms in the Pacific Northwest (PNW) are associated with ARs, although such fraction reduces to 60% in 
the Pacific Southwest (PSW) (Lamjiri et al., 2017). In a warmer climate, the dominant thermodynamic change 
leads to a 35% increase in AR frequency (Hagos et al., 2016), which is comparable to our results. The Southwest, 
influenced by the North American Monsoon (NAM), is projected to experience 114.7% more events and 45.6% 
greater scales. The Great Plains have been mainly impacted by mesoscale convective systems (MCSs) and trop-
ical cyclones, which are expected to increase precipitation extremes owing to strengthened convective updrafts 
and intensified cyclone circulation in a warmer climate (Nie et al., 2018; Prein et al., 2017). We see on average 
a 99.9% and 128.1% increase in frequency and spatial scale, indicating that the increase in spatial scale outpaces 

Figure 3. (a) Violin plot of current and future rainfall spatial scales grouped by the Bukovsky regions. Numbers in red text 
indicate relative changes (%) in extreme rainfall occurrences; (b) Map of rainfall spatial scale changes, averaged over the 
Bukovsky regions.
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that in frequency. In the central US, where the MCSs contribute 30%–70% of the total warm-season precipitation 
(Feng et al., 2016; Fritsch et al., 1986), extreme rainfall occurrences (167.4%) are the mostly increased among 
climate divisions. The East Coast, influenced by tropical and extratropical cyclones, has a 123.3% and 128.9% 
increase in frequency and spatial scale. The East Coast has the largest change in rainfall spatial scale, partly attrib-
uted to increased storm motion (Prein et al., 2017). In general, we observe an increasing rainfall spatial scale from 
the West Coast to the East Coast (Figure 3b), implying a transition from convective-scale to synoptic-scale storms 
in the future. Six individual storms in Figure 4 visually manifest the increase in rainfall spatial scale in PGW. Two 
factors result in the increase in spatial scale: (a) single storm grows in length in PGW run (Figures 4b and 4e); (b) 
individual storms in CTL are connected to become large storms in PGW (Figures 4a–4d, and 4f).

3.1.2. Floods

Roughly one-third of the extreme rains in the US translates to floods by comparing their occurrences in Figures 3 
and 5, which is close to the ratio of 36% estimated by Ivancic and Shaw (2015) and Sharma et al. (2018). The 
increase in extreme rainfall and snowmelt overcome the drier catchment states under anthropogenic warming, 
resulting in an increase in flood frequency and spatial scales across the US climate zones in Figure 5.

Similar to the frequency changes of extreme rainfall, flood frequencies (scales) in Figure 5 are increased by 
55.2% (45.9%) in the Great Plains. However, the central US is likely to experience 74.2% more frequent floods 
and 33.6% greater flood extent, much less than the changes in the western US The East Coast also sees a reduced 

Figure 4. Maps of six storm events show the spatial scale difference between CTL and Pseudo Global Warming. The black contour line encloses the area whose 
rainfall rates exceed the 2-year rainfall threshold.
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increase in flood spatial scale (35.8%) compared to the West Coast (70.6%). Relatively speaking, floods in the 
western US are becoming more severe in the future than those in the central and eastern US, opposite to rainfall 
changes. Such a pattern corroborates the multidisciplinary nature of flooding rather than being a pure atmos-
pheric process. From the perspective of flood-generating mechanisms, the western US features steeper terrain 
and shallower soil profiles that more typically yield surface runoff by the infiltration excess process (i.e., rainfall 
rates exceed maximum soil infiltration capacity) and snowmelt (Brunner et al., 2020; Stein et al., 2021). The 
infiltration excess process is less dependent on catchment wetness (antecedent soil moisture or groundwater 
level) but rather on rainfall intensity. Increased surface water availability from snowmelt and rain on snow in a 
warmer climate apparently increase flood risk in the western US (Musselman et al., 2018). On the contrary, the 
relatively flatter terrain and deeper soil profiles in the central and eastern US yield runoff generation by the satu-
ration excess process (i.e., surface runoff is produced after the soil saturates from the bottom up), thereby leaving 
floods sensitive to antecedent soil moisture and groundwater levels. These two hydrological states, however, are 
more likely to decrease in a warmer climate because of increased atmospheric temperature and PET (Sharma 
et al., 2018; Wasko & Sharma, 2017).

Figure 5. Similar to Figure 3, but for floods.
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3.2. Seasonal Changes

3.2.1. Western United States

Figures 8 and 9 depict the seasonality of extreme rainfall simulated by CTL and its changes by taking the DOY 
difference (PGW minus CTL). Figures  6a and  7a, showing the spatial distribution of the months at which 
extreme rainfall occurs, are on par with US extreme rainfall climatology. The Pacific West Coast, as discussed 
in Section 3.1, is dominantly influenced by ARs that occur in winter (mostly in January). Therefore, the flood 
season in such a region, as shown in Figures 8a and 9a, follows closely with the extreme rainfall season. In fact, it 
is also the place that has the strongest rainfall/flood seasonality, with the SI of both rainfall and floods above 0.8. 
Future changes of peak days and seasonality index are marginal for both rainfall (Figures 7b and 7d) and floods 
(Figures 9b and 9d), with a small Inter-Quartile Range (IQR). Moving toward the East, SI values for both rainfall 
(Figure 7c) and floods (Figure 9c) tend to decrease with increasing IQR, pointing to more complex inland weather 
systems. Future SI values in the east of the Pacific Coast indicate negative changes in the future, manifesting 
weakening seasonal cycles of rainfall (Figure 7d) and flooding (Figure 9d). The Great Basin is jointly impacted 
by ARs, troughs, and cutoff lows (Prein & Mearns, 2021), leading to a more diverse seasonality of extreme 
rainfall (Figure 7a) and flooding (Figure 9a), yet centered in wintertime. Over the Northern Rockies, extreme 
rainfall or snowfall spans the winter-spring-summer season. Due to the large fraction of snowmelt, flood seasons 
are centered in late spring and early summer. Future floods are becoming, on average, 22 days earlier because 
of earlier snowmelt caused by increasing temperatures, comparable to the 3–5 weeks results by Xu et al. (2021). 
The Southern Rockies are featured by spring-summer-fall extreme rainfall and floods occurring during the warm 
season from spring through fall. Notably, flood seasonality (0.77) over the Rockies is much stronger than rainfall 
seasonality (0.53), which is attributed to the contribution of snowmelt that typically occurs in late spring and 
early summer. However, flood seasonality in such a region in the future will decrease by 0.23, a result of less 
snowmelt contributing to flooding generation from a decreasing snowpack. As a consequence, one can infer that 
the reduced flood seasonality complicates predictability in downstream snow-fed streams. The Southwest region 

Figure 6. Maps of temporal changes of extreme rainfall: (a) retrospective rainfall seasonality (month); (b) difference of peak day between Pseudo Global Warming 
(PGW) and CTL; (c) rainfall seasonality index; (d) differences of seasonality index between PGW and CTL.
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is equally influenced by summer-fall NAM and winter inland-penetrating Pacific storms, while over half of the 
flood events occur in fall. However, no significant temporal shifts are observed in the future simulation.

3.2.2. Central United States

Weather types in the central US are composed of spring-summer MCSs (Ashley et al., 2003; Prein et al., 2017), 
summer-fall tropical cyclones (Chalise et al., 2021; Li, Chen, Gao, Gourley, et al., 2021), and spring extratrop-
ical cyclones (Barbero et  al.,  2019), among which extreme rainfall events in summer are the most prevalent 
(Figure 7a). Flood events in late spring are common in the northern plains (Figure 9a), mainly caused by the 
contribution from snowmelt and rain-on-snow events (Brunner et al., 2020; Villarini, 2016). Owing to earlier 
onsets of seasonal snowmelt (Figure 7b; Li, Chen, Gao, Gourley, et  al.,  2021), flood events in the Northern 
Plains, Great Lakes, and Prairie will become, on average, approximately 1 week earlier in the future (Figure 9b). 
Similar to the Rockies, the seasonality of extreme rainfall and flood in the central US is weakening in the future 
(Figures 7 and 9d), which makes flood prediction more challenging (Ledingham et al., 2019).

3.2.3. Eastern United States

Extreme rainfall in the eastern US is associated with cool-season extratropical cyclones and warm-season convec-
tive rainfall. The seasonality of rainfall on the East Coast reaches 0.6. Flood events, caused by convective rainfall 
and exacerbated by snowmelt in the Appalachians and New England, tend to span across seasons (Figure 7a). 
Flood seasonality in the eastern US is 0.3 (Figure 9b). As discussed in Section 3.1.2, flood generation is tied to 
catchment states in these regions, meaning rainfall exerts a less important role than that in the western US. Due to 
drier antecedent states (e.g., soil moisture and groundwater level), flood events will be delayed for tens of days in 
a warmer climate (Figure 9b), especially for the Mid-Atlantic (14 days) and Deep South (10 days).

3.3. Temporal Correlation Between Rainfall and Floods

Despite decreasing rainfall and flood seasonality in the future, the circular correlation of event date between 
extreme rainfall and floods increases (Figure 10). This can be explained by less accumulating snowpack in the US 
which delays rainfall-runoff transformation. Similarly, the correlation of seasonality between rainfall and floods 
increases from 0.63 (CTL) to 0.77 (PGW). The seasonal cycle of rainfall and flooding diminishes in the future, 

Figure 7. Retrospective rainfall seasonality and changes grouped by the Bukovsky regions. (a) month compositions in retrospective setting; (b) differences in Date Of 
Year between Pseudo Global Warming (PGW) and CTL; (c) seasonality index (SI); (d) differences of SI between PGW and CTL. The Inter-Quartile Range (defined 
as the upper and lower bound of the boxplot) is the shaded gray color. The numbers above the boxplot are the median values, which indicate increase (red) or decrease 
(blue) in seasonality.
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while rainfall and flooding events become more correlated. Both correlations can act as predictive tools to infer 
future flood characteristics.

Breaking down the correlations into months in Figure 10e, we can diagnose the monthly correlation variations. 
We observe the correlation of rainfall-flood date in PGW is apparently higher in the future for the cool seasons 
(January, February, March, and April). Correlation is nearly zero for CTL simulation in these months because of 

Figure 8. Similar to Figure 6, but for floods.

Figure 9. Similar to Figure 7, but for floods.
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the delayed rainfall-runoff process. However, earlier snowmelt in the future 
shortens that delay, thereby leading to a higher correlation (∼0.1). On the 
other hand, the present-day correlations in October, November, and Decem-
ber are slightly higher than those in PGW. The correlation of seasonality in 
the future is consistently higher than present across months, while the corre-
lations in February and March for both CTL and PGW are small (0.1).

The spatial map showing a rainfall-flood correlation in Figure 11 identifies 
regions with strong/weak correlations. The rainfall-flood date correlation is 
generally stronger in the western US (0.31) than in the eastern US (0.11). The 
Southwest and Mezquital, in particular, have CC values above 0.6 because of 
intense storms and low-infiltrating soils, resulting in flashy floods. This corre-
lation even becomes 14.9% stronger in the future, possibly due to intensified 
storms fueled by enhanced temperature (energy) and atmospheric moisture 
(water availability). The Great Basin and Rockies will also have 34.4% higher 
correlations in the future, which is related to earlier snowmelt that reduces 
rainfall-runoff lag time. The central and eastern US have slight increases in 
the correlation of DOY. The correlation of seasonality is increased across the 
CONUS, except for the Great Lakes, Prairie, and North-Atlantic.

4. Discussion
4.1. Representativeness of Flood Synchrony Scale by Hydrologic 
Models

This study introduces a new method that uses a high-resolution distributed 
hydrologic model to overcome limited coverages by stream gauges that are 

Figure 10. Temporal correction between rainfall and floods: (a) circular correlation in rainfall-flooding date in historical simulation; (b) circular correlation in 
rainfall-flooding date in future simulation; (c) histogram of seasonality index in historical simulation; (d) histogram of seasonality index in future simulation; (e) 
correlations of Date of Year and seasonality index by month.

Figure 11. Map of correlation over the CONUS: (a) circular correlation 
between rainfall and flood dates in CTL simulation; (b) differences of 
circular correlation between rainfall and flood dates (Pseudo Global Warming 
[PGW]-CTL); (c) Spearman correlation between rainfall and flood seasonality 
in CTL simulation; (d) differences of spearman correlation between rainfall 
and flood seasonality (PGW-CTL). The stipples indicate a significant 
correlation (p-value less than 0.05) between rainfall and flood.
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conventionally used to derive flood synchrony scale (Berghuijs et al., 2019; Brunner et al., 2020). The added 
values of model simulation against stream gauges are two-fold. First, in terms of spatial extent, the reach-scale 
representation of flood enabled by modeling is more informative than stream gauges at point-scale. In a simple 
illustration (Figure S4 in Supporting Information  S1), let us assume gauge-based approach indicates flood 
synchrony at A, B, C, and D with near-perfect confidence, despite the inherent uncertainty sources from subjec-
tive parameterization and gauge measurement itself. Such confidence probably drops quickly as the target of esti-
mation moves away from these gauge points. Put simply, one may argue the reaches in between these gauges have 
synchronous floods, but it would be hard for him/her to infer the extent outside these gauges. In comparison, the 
level of confidence at gauge locations and their contributing area is comparable. Moreover, we can now not only 
infer synchronous floods occurred between A–B, B–C, and C–D as a way of interpolation but also at extended 
reaches that is, A–E, D–F, and B–G. In essence, the modeling approach can be seen as a way to physically inter-
polate/extrapolate information from gauges.

The second fold is whether model simulated flood synchrony is realistic, which necessitates careful validation. 
We gathered flow frequency data at more than 6,000 USGS gauges and compared simulated 2-year flow with 
observed values (Figure S5 in Supporting Information S1). The underestimation of 2-year flow is obvious, with 
the bias being −1.1. Further, the validity of spatially synchronous flood is verified using a metric connectedness 
error (Figure S6 in Supporting Information  S1), which measures the differences between number of gauges 
by simulation and by observation co-experiencing floods. Overall, the median connectedness error is centered 
around zero, with slight underestimation (−16). Particularly for spring floods, the degree of underestimation is 
magnified (−121). The overall underestimation of both 2-year flow and synchronous flood events point to an 
overall dry bias, as reported by Liu et al. (2017) and Li et al. (2022).

However, such validation is difficult to directly assess the flood synchrony scale by observations and simula-
tions. Spatially coherent observation is more insightful. A collection of satellite observations such as optical 
sensors (e.g., MODIS, Landsat) and synthetical aperture radars (e.g., Sentinel-1) is promising to construct a flood 
synchrony data set for model validation. In this study, we instead emphasize the relative changes due to climate 
change while did not conduct full-blown evaluation.

4.2. Sensitivity of the Results to Climate Divisions and Extreme Thresholds

Results interpreted in this study are subject to choices of climate divisions and thresholds to determine extreme 
rainfall or floods. The Bukovsky climate zones, relative to the Koppen-Geiger climate zones, are assumed to be 
more homogenous. We expect the zonal mean statistics calculated in for example, Figures 3 and 5 can vary as if 
using different climate divisions. However, the general message should be similar—western US will likely expe-
rience greater changes in floods yet less changes in extreme rainfall, as counter to the eastern US. Second, the 
extreme thresholds for rainfall and floods have great impacts on occurrences of those events. A detailed depiction 
of extreme rainfall and flooding events such as low-end and high-end extreme events is insightful to cover the full 
spectrum of frequency. This study establishes a methodology and paves a way for future research on such a scope.

4.3. Results Intercomparison

Despite many existing climate studies that focus on flooding, few of them have fully considered convective-scale 
storms based on the GCM, which forms the foundational differences when making comparisons. For instance, 
previous studies indicate that some dry regions such as the Southwest will experience less frequent floods 
(Hirabayashi et al., 2013), However, we see an increase in flood frequency and scales (Figure 5). This contrasting 
result is likely a reflection of different climate data at different scales. First, our high-resolution climate simula-
tion can overcome the poor representation of extreme precipitation (especially convective-scale storms) in GCMs 
that are often used in large-scale flood simulation (Farnham et al., 2018; Kendon et al., 2012). Second, this data 
set is primarily used for assessing thermodynamic changes in the atmosphere, which exerts great importance in 
invigorating storms in the future, while the dynamic changes included in other flood studies are not allowed. 
Some similarities coexist with differences. For instance, intensification of extreme rainfall and flood events with 
respect to their spatial scales is found in Yu et al. (2020). Earlier flood onsetting over the Rockies and later in 
the eastern US have been supported by other studies (Li, Chen, Gao, Gourley, et al., 2021; Villarini, 2016; Xu 
et al., 2021).
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4.4. Reconciling Different Rainfall-Flood Patterns in the Western and Eastern US

Floods are modulated not only by the atmosphere and climate mechanisms but also catchment states (e.g., ante-
cedent soil moisture, groundwater level, land-use changes, snowmelt, and rain on snow) and river networks (Merz 
et al., 2021). In this study, we found different patterns for the changes in extreme rainfall and floods across the 
US. The western US is likely to experience greater (less) changes in flood (rainfall) frequency and spatial scales, 
as opposed to eastern US whose changes in rainfall (flood) frequency and spatial scales are greater (lesser). One 
plausible reason is the changes in antecedent soil moisture. To verify whether the future catchment state is drying, 
especially in the eastern US, we extracted antecedent soil moisture, 1 day prior to the onset of flooding events, 
as shown in Figure S7 in Supporting Information S1. Distinct spatial patterns appear in Figure S7a in Supporting 
Information S1—higher values in the eastern US and lower in the western US. In the future, there is a drying 
tendency of antecedent soil moisture conditions over a large portion of the US, especially in the Southern Plains. 
The eastern US generally experiences 0%–5% drier soil moisture conditions in the future, in contrast to 5%–10% 
wetter in the Pacific Coast and Great Basin (Figure S7b in Supporting Information S1). It explains why the future 
increase in rainfall extent is more closely tied to flood extent in the West than the East, as the dry antecedent soils 
modulate the intense rainfall.

5. Conclusion
In this study, we explore the spatiotemporal patterns of US floods under the current climate and how they change 
under a warmer climate. A convection-permitting climate simulation enables high-resolution flood simulation 
(CREST model + Snow 17 model), which reveals a continental perspective of reach-level flood spatiotemporal 
characteristics. The following points summarize the primary findings of the study:

1.  In the future climate scenario, the 2-year rainfall occurrences and spatial scales increase by 118.0% and 
101.7%, respectively. As a consequence, the 2-year flood occurrences and spatial scales increase by 101.7% 
and 44.9% across the US.

2.  Earlier and Faster snowmelt bring earlier flood season onset and shorten rainfall-to-flood timing, which 
results in 0.11 and 0.14 stronger correlation in date of occurrence and seasonality.

3.  Regionally, floods in the western US become relatively more severe (+70.6% greater flood spatial scale) in 
the future than those in the East (+35.8% greater flood spatial scale), as snowmelt exacerbates flooding in the 
West, while the drier antecedent catchment soil moisture in the East partially offsets flooding.

4.  The Pacific Coast, both currently and in the future, has the strongest seasonality for extreme rainfall (0.80) 
and floods (0.85) in the US However, seasonality decreases moving toward the East Coast (0.4 for rainfall and 
0.3 for floods). The seasonal cycles of rainfall and floods become less pronounced in the East, partly caused 
by more evenly distributed extreme rainfall days, earlier snowmelt, and lengthened rainfall-runoff lag time in 
watersheds with drier soils in the future.

This study reveals a pressing need for the national weather and hydrology community to adapt to climate change 
because of not only intensified frequency in rainfall and floods but also more widespread rainfall and floods. 
Even worse, the weakening seasonal cycle of extreme rainfall and floods challenges flood predictability asnd 
preparedness. We recommend future works incorporating anthropogenic effects on floods in detail to present an 
economic assessment of future flood damages and resilience measures.
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